
Jamie Lewis, Chenxi Wang 
August 2019

Chaos Engineering: 
New Approaches To Security



Chaos Engineering: 
New Approaches To Security

RAIN CAPITAL | Chaos Engineering: New Approaches To Security 1

A Rain Capital Research Note
Jamie Lewis, Dr. Chenxi Wang

Introduction: Cloud-Native Architectures Require Testing 
and Experimentation
As we discussed in the Rain Capital Research Note “DevSecOps and Detection Engineering: New Approaches 
To Security,” the move to cloud-native architectures is having a profound impact on both security posture and 
operations. In cloud-native environments, organizations must apply the principles that drive DevOps and site 
reliability engineering (SRE) to security, bringing security programs into architectural and organizational 
alignment with the systems they protect. New controls, real-time metrics, and rapid feedback loops are just a 
few of the requirements security teams face in cloud-native environments.

Testing, of course, has always been a critical component of both the application development process and any 
effective security program. And like application development itself, testing techniques and timeframes have 
changed dramatically with the DevOps model. Within Continuous Integration/Continuous Deployment (CI/CD) 
pipelines, constant testing and improvement are an operational given. More significantly, cloud-native 
companies such as Netflix have discovered that testing alone cannot ensure the resilience of cloud-native 
systems. They have moved beyond testing to experimentation, using chaos engineering.

But in more traditional security operations, security testing is often a discrete phase in a linear and relatively 
static process. Code reviews often occur late in a development process, for example. In the larger enterprise 
context, penetration testing, red team exercises, and other approaches, while valuable, occur long after 
deployment and often aren’t well-integrated with the development process. Like other elements of traditional 
enterprise security programs, these approaches must evolve to support DevOps and protect cloud-native 
systems.

https://static1.squarespace.com/static/5a927314b27e397ab120694b/t/5c1a8ef9575d1fa685c18065/1545244412731/Rain+Capital+-+Detection+Engineering+December+2018+.pdf


The Rain Forecast: Chaos Engineering Increases the 
Resilience of Security Systems 
As they apply DevOps and SRE principles to security controls, security teams must adopt new testing techniques 
and time frames, enabling continuous security pipelines. 

To effectively support cloud-native systems, security testing must become a more continuous practice, 
reflecting the nature of CI/CD operations. Enterprises must also consider the long-term implications of 
distributed systems and the need to move beyond testing systems to experimentation. To that end, security 
professionals are advocating the application of chaos engineering to security operations.

Chaos engineering is the technique of using controlled experiments--often in production systems--to discover 
flaws in complex, distributed systems before problems happen. Chaos experiments have played a significant 
role in increasing reliability, uptime, and overall confidence in complex cloud-native systems, and have thus 
gained a great deal of attention. It seems only natural to apply the technique to the security mechanisms 
designed to protect these systems.

Like detection engineering, security chaos engineering drives stronger architectural and organizational 
alignment between security programs and the systems they protect. By uncovering unpredictable failure 
modes, security chaos engineering can:

• Increase resilience
• Improve risk management decisions
• Help security managers allocate budgets more effectively

Chaos engineering is a compliment to, not a replacement for, many existing security testing methods. While 
they must evolve to support DevOps in general and CI/CD in particular, existing security testing models play 
important roles in security operations. Red and purple team exercises focus on an adversarial approach, for 
example, allowing organizations to test how security systems and teams respond to active threats. In contrast, 
chaos engineering allows organizations to find security failures that are difficult, if not impossible, to find by 
traditional testing methods due to the complex nature of distributed systems. These include failures caused by 
human factors, poor design, or lack of resiliency.

As they transition to cloud-native systems, organizations should consider how and when to incorporate chaos 
engineering into their security programs. While these potential benefits are significant, however, organizations 
should not attempt chaos engineering without careful planning. Perhaps more than any technique in the DevOps 
arsenal, chaos engineering requires strong organizational alignment, a good bit of experience, and a methodical 
approach. Consequently, organizations without that experience should carefully consider how and when to start 
applying the technique to their systems, starting small and learning as they go.

RAIN CAPITAL | Chaos Engineering: New Approaches To Security 2



RAIN CAPITAL | Chaos Engineering: New Approaches To Security 3

 









In other words, instead of waiting for systems to fail, developers should introduce failures through 
experiments—in controlled conditions—so they can see what happens.

Testing vs. Experimentation

In general, testing allows a team to assess known capabilities and system attributes. In contrast, 
experimentation is about discovering the unknown. All of which leads us to phrases such as “known knowns” 
and “unknown unknowns.”

When Donald Rumsfeld famously used the term “known knowns”, he brought a new level of notoriety to a 
concept familiar to many national security and intelligence officials. The idea of known and unknown risks, 
which has its roots in cognitive psychology and the Johari Window, has come into more frequent use in 
software development circles. It certainly applies to the security of complex distributed systems. Chaos 
experiments are a means of better understanding “known unknowns”, becoming aware of “unknown knowns”, 
and discovering “unknown unknowns”. Figure 1 illustrates these various states of system- (or self-) 
knowledge.

 “the discipline of experimenting on a distributed system in order to build confidence in 
the system’s capability to withstand turbulent conditions in production.” 

http://principlesofchaos.org/
https://en.wikipedia.org/wiki/There_are_known_knowns
https://en.wikipedia.org/wiki/Johari_window


RAIN CAPITAL | Chaos Engineering: New Approaches To Security 4

The term “experiment” also brings with it the essential notion of relying on the scientific method. Instead of 
making multiple changes to the system, or introducing an external event, the experiment involves making one 
change. The team introduces that change under controlled conditions, limiting the “blast radius,” or potential 
impact. As Figure 2 illustrates, if the team finds no problems within a small blast radius, it can gradually 
increase the radius, until experiments run at scale. In most cases, teams run both an experimental group and a 
control group to evaluate what impact changes made on system behavior. The goal of these experiments is to 
assess and increase both the observability and understanding of how a complex system actually works.

Early on, for example, Netflix created Chaos Monkey, a tool that randomly shuts down instances in its 
production systems to test how the remaining systems respond to outages. Knowing that Chaos Monkey 
could hit their systems at any time gave developers a strong incentive to focus on resilience. And as it 
operated, Chaos Monkey revealed “unknowns” -- information about how the system actually works under a 
variety of conditions that was difficult to know beforehand. Netflix released Chaos Monkey under an open 
source license in 2011, and its chaos engineering toolbox has evolved significantly since then. (For more 
information on using chaos engineering in software development, see this and this.)

Figure	1:	The Known Unknowns Matrix

https://netflix.github.io/chaosmonkey/
https://www.youtube.com/watch?v=FCZVAZaXIjs
https://www.oreilly.com/webops-perf/free/chaos-engineering.csp


RAIN CAPITAL | Chaos Engineering: New Approaches To Security 5

Figure	2:	The Blast Radius

Security Chaos Engineeering 
As they worked to secure cloud-native environments, both Charles Nwatu and Aaron Rinehart came to the 
conclusion that applying chaos engineering to security is imperative, co-authoring a post on the subject. 
(When they wrote the post, Nwatu was director of security at StitchFix. He’s now with Netflix. Rinehart was 
chief security architect with UnitedHealth Group and led the development of Chaoslnger. He’s now with 
Verica.) In that post, Nwatu and Rinehart define “security chaos engineering” as:

 “the discipline of instrumentation, identification, and remediation of failure within 
security controls through proactive experimentation to build confidence in the 
system’s ability to defend against malicious conditions in production.”

The goal of these experiments is to assess and increase observability, moving security from subjective 
assessment into objective measurement. As they do in the DevOps world, chaos experiments allow 
security teams to reduce the “unknown unknowns” and, over time, replace “known unknowns” with 
information that can drive improvements to security posture. By intentionally introducing a failure mode, 
security teams can discover how well-instrumented--observable and measurable--security systems truly 
are. Teams can see if functions are working as well as everyone assumed they would, objectively 
assessing abilities and weaknesses, moving to stabilize the former and eliminate the latter. 

https://opensource.com/article/18/1/new-paradigm-cybersecurity


These experiments are very different from traditional security testing. In a red team exercise, for example, a 
team may simulate a known attack in order to test specific controls designed to detect or prevent that attack. 
Or a security team can test anti-phishing measures to see how they work. Such tests can yield useful, but large-
grained results, such as whether an attack failed or succeeded. But such tests also create a great deal of noise 
in complex, distributed systems, making it difficult to learn fine-grained detail about how security controls 
actually work under a variety of conditions. And it’s in the interactions and failure modes of the components in 
a distributed system that the most significant security failures lurk. 

1RAIN CAPITAL | Chaos Engineering: New Approaches To Security 6

Example Experiments

Instead of making multiple changes to the system, or introducing an external event (as in an attack 
simulation), the experiment involves making one change and observing what happens. Take, for example, a 
simple but seemingly perennial security problem in cloud-based systems: an open Amazon S3 bucket. In a 
controlled experiment, the security team could intentionally open an S3 bucket to unauthorized Internet 
access. Doing so allows the team to see if the controls designed to detect the problem actually work. More 
important, the team can also see what happens under those circumstances and compare actual results with 
expected results. 

Did the system produce the expected alerts and telemetry? Did the proper people receive those alerts in an 
acceptable time frame? Was the information in those alerts complete enough to allow them to take 
appropriate action, or did people have to dig to find the information they needed, wasting precious time? Most 
importantly, were there unexpected consequences or outcomes and if so, how should the team address 
them?

Another slightly more complicated example is AWS’s sometimes complex and confusing identity and access 
management system. Application developers may need to change a role-based policy to support the service 
component they’re building. But they may not understand the potentially far-reaching effects of changing such 
a policy given that many other components in the same or other systems may rely on that same policy. 

By intentionally making a change in a critical IdAM policy, security teams can watch what happens under such 
circumstances. Was the developer asked via a Slack message to confirm the change? Were the proper people 
on the security team notified, and given the information necessary to contact the developer and discuss the 
change in the context of the project? Was the change properly vetted with risk owners in the business? Did 
unexpected things happen? And what do those things tell you about the system?

These are just two relatively simple examples. Security teams can apply chaos engineering to a wide variety 
of scenarios and controls. And it’s in the unexpected results that security managers will learn the most about 
how their systems actually work and how they can best improve them. As Rinehart points out, more often 
than not, the response from security teams is “I didn’t realize the system worked like that.”



RAIN CAPITAL | DevSecOps and Detection Engineering: New Approaches To Security 7

The Benefits of Chaos

Applying chaos engineering to security has several clear benefits. In short, it can: 

• Expose flaws and problems that are difficult to discover a priori, defining the delta between how the
security team thinks the system operates and how it actually operates. Chances are high that the
team will find out a lot it didn’t know about how the system actually works, discovering work it needs
to do to improve the observability and security of the system.

• Enhance risk management decisions, helping business and security people determine how best to
spend their security budgets. Nwatu advocates using chaos experiments to make vulnerability
assessments and identify capability gaps. Managers can more clearly identify levels of risk and work
with business (risk) owners to make better budget investment decisions, driving down risk by
increasing capabilities in specific areas.

• Give teams experience with failures,	significantly increasing their ability to deal with them quickly and
effectively. Most security teams have playbooks that define an organization’s incident response plan.
Gameday exercises using security chaos experiments allow organizations to validate those playbooks
—and the teams tasked with running them—measuring what actually happens, before real problems
occur.

• Bring security into architectural alignment with the systems it protects, enabling end-to-end
instrumentation that makes system behavior observable and measurable. Red and purple team
exercises are more difficult to perform on a continuous basis. The constrained nature of chaos
engineering makes continuous (rapid and iterative) improvement more feasible.

Products and Tools

Chaos engineering is a relatively new idea in the security domain. As the first to apply chaos engineering to 
software development, Netflix built many of its own tools. But given the results organizations such as Netflix 
have had with the practice, general-purpose tools have started to emerge, allowing more organizations to add 
chaos engineering to their cloud development arsenal. Such tools typically provide a general-purpose 
framework for developing experiments and tools for deploying them and reporting the results. Libraries of 
specific, focused experiments work within these general-purpose frameworks.

Currently, there aren’t many security-specific experiments in the libraries included in these products, but we 
expect that to change. There is a growing community of security professionals who are both advocating 
security chaos engineering and developing tests through open source and other community initiatives. And as 
general purpose chaos engineering tools mature, their experiment libraries will include more security-specific 
experiments. Today, however, security managers should be prepared to design and build their own 
experiments using the tools these general-purpose platforms provide.



RAIN CAPITAL | Chaos Engineering: New Approaches To Security 8

Here, we provide a basic overview of some of the tools available:

• ChAP: Netflix developed the Chaos Automation Platform, or ChAP, to automate experiments due to
the rapid change inherent to its production systems, taking the notion of continuous experimentation
quite literally. ChAP interrogates the deployment pipeline for a specific service. It then launches both
experiment and control clusters of that service and routes a small amount of traffic to each. A
specified scenario is applied to the experimental group, and the results of the experiment are
reported to the service owner. ChAP will automatically end an automated experiment if it exceeds a
predefined error budget. Netflix integrated ChAP with Spinnaker, its CI/CD system, allowing the
engineers to run experiments often and continuously. Netflix says it has identified and prevented
resiliency-threat regressions since deploying ChAP in this fashion.

• The Chaos Toolkit: The Chaos Toolkit is an open source project that provides an extensible toolkit
for experiments that developers can adapt to specific use cases. The Chaos Toolkit allows
developers to create their own “probes” (for observing system state as part of an experiment) and
“actions” (for affecting the system while conducting an experiment). Developers can write and
package a Python function in a module that can be called from the Chaos Toolkit, execute an
arbitrary executable, or invoke an HTTP endpoint.

• Gremlin: Gremlin provides a general-purpose, commercial product that the company positions as
“failure as a service.” Gremlin supports chaos engineering experimentation and reporting on its
library of failure testing modes, including resource exhaustion (CPU, Memory, IO, or Disk
bottlenecks), bad behavior (dying processes, time drifts, instance reboots), and unreliable networks.
The Chaos Toolkit team recently announced that the toolkit supports Gremlin.

• Verica: A recent startup, Verica was founded by Rinehart and Casey Rosenthal, who ran the chaos
engineering team at Netflix. Rosenthal also co-authored the O'Reilly book on Chaos Engineering and
the manifesto at PrinciplesofChaos.org. Verica provides an enterprise platform for what it calls
“Continuous Verification,” which is based on chaos engineering. Verica based its platform on
Netflix's ChAP and, according to Rinehart, it includes security-specific chaos experiments. Verica’s
platform sits on-prem or within the customers' cloud.

• Chaoslingr: The first security-specific tool to appear was a relatively simple but interesting open
source project, Chaoslingr. Created by a team led by Rinehart, Chaoslinger is a security experiment
and reporting framework. Anyone can write their own experiments, but developers are encouraged to
post their experiments for review and inclusion in the project. Written in Python, the framework
consists of four AWS Lambda functions, as follows:

o Generatr, which identifies the object to inject the failure on and calls Slingr
o Slingr, which injects the failure
o Trackr, which logs details about the experiment as it occurs
o Experiment description, which provides documentation on the experiment along with

applicable input and output parameters for Lambda functions

https://medium.com/netflix-techblog/chap-chaos-automation-platform-53e6d528371f
https://www.spinnaker.io/
https://github.com/chaostoolkit
http://www.gremlin.com/
https://www.verica.io/
https://www.oreilly.com/webops-perf/free/chaos-engineering.csp
https://principlesofchaos.org/
https://github.com/Optum/ChaoSlingr


RAIN CAPITAL | Chaos Engineering: New Approaches To Security 9

• Throw a 503 Service Unavailable error: System managers can easily configure Istio to return 503
errors to service requests, testing how robust distributed applications are in the face of unavailable
services.

• Inject service response delays: Istio allows managers to inject variable-length network delays at
different points in the system without changing any code. Random response delays can be a
difficult problem to deal with in a complex microservices environment. Using this feature with
Jaeger tracing, managers can spot problems proactively and increase system resiliency.

• Retry services a random number of times: When applications retry service requests after an
unsuccessful attempt, they typically follow a predetermined pattern. With Istio, managers can
dynamically change the number of retry attempts, another useful tool in distributed debugging and
tracing.

Proceed With Caution

Chaos engineering is a clear example of how company culture and experience are tightly coupled with the 
cloud-native stack and DevOps model. At Netflix, the requirement for chaos engineering emerged as the 
company made the transition from using its own data centers to AWS. The company’s culture--and practice of 
hiring talented engineers--allowed chaos engineering to evolve as an emergent property, based on how they 
were already working. 

Companies new to DevOps and chaos engineering, then, should proceed carefully when and if they adopt the 
technique in any context. Unleashing full-blown security chaos engineering on your production system at one 
time would be what Rinehart calls “mayhem engineering,” with all of the bad outcomes that moniker implies.

The first step is ensuring the right skill set is on staff. That means engineering talent, not just testers. Today, 
many organizations lack staff with skill sets necessary for chaos engineering. Even with the right talent, 
starting small is essential. Organizations should create a small team that can learn the tools and techniques, 
working with small experiments in the staging or development environment first. The team should start with a 
single host, container, or microservice in the test environment. As the team gains experience, it can expand 
the experiments to multiple hosts or other system components, methodically increasing its scope in lock step 
with rigorous analysis of the results. 

Only when the team as gone as far as it possibly can in the test environment should it start experimenting in 
the production system. When doing so, the team should reset to the smallest experiment and scope possible, 
and grow from there. And some obvious rules should apply. Teams should never conduct a chaos experiment 
in production when they know it will cause severe damage, for example, possibly affecting customers. The 
team should also ensure that known problems have been fixed before starting experimentation.

Beyond these general purpose chaos engineering tools, system-specific utilities for performing fault 
experiments are starting to emerge. For example, Istio, the popular open source service mesh technology, 
includes the ability to perform chaos experiments in a microservices environment, without the need to change 
the applications. More specifically, Istio allows testers to: 



Conclusion

As enterprises adopt cloud-native stacks and the DevOps model, their security programs must evolve to meet 
continuous deployment demands these systems create. Traditional security testing, while valuable, is 
insufficient to determine the resilience of security in cloud-native environments. When applied in a security 
context, chaos engineering has the potential to reveal valuable, objective information about how security 
controls operate, allowing organizations to invest security budgets more efficiently. Given that benefit, 
organizations should consider when and how to implement the technique in their cloud-native systems. 
Organizations without chaos engineering experience should start small, however, learning as they go.

RAIN CAPITAL | Chaos Engineering: New Approaches To Security 10

Disclosure: Rain Capital has an investment in Tetrate, which provides products and services based on Istio 
and Envoy. As of this writing, Rain capital has no investments in the other companies mentioned in this report.

https://www.tetrate.io/



