
Jamie Lewis, Chenxi Wang
December 2018

DevSecOps and Detection Engineering:
New Approaches To Security

DevSecOps and Detection Engineering:
New Approaches To Security

A Rain Capital Research Note
Jamie Lewis, Dr. Chenxi Wang

RAIN CAPITAL | DevSecOps and Detection Engineering: New Approaches To Security 1

Introduction: DevSecOps in a Cloud-Native World
The rapid move to the cloud is driving significant changes to application development models and operational
processes. DevOps and Continuous Integration/Continuous Deployment (CI/CD) lead to higher degrees of auto-
mation, while containerization, microservices, serverless computing, and the more recent advent of ‘the service
mesh’ enable faster deployments, more dynamic execution environments, and rapid scale.

These changes don’t just challenge the relevance of the traditional data center. They challenge enterprise IT
culture at its core. As organizations adopt cloud technology stacks and DevOps models, the role and priorities
of the IT professional must evolve as well. Security is no exception, and the move to cloud-native is having a
profound impact on both security posture and operations, introducing the following issues:

	 •  Distributed architectures create new challenges: Diverse components interacting within a
	 distributed architecture introduce unpredictable dynamics and unanticipated failure modes.
	 •  Ephemeral workloads challenge static security approaches: Dynamic and short-lived work
	 loads require security controls that can change and adapt as quickly as the environments in
	 which they run.
	 •  The DevOps mindset is upending the status quo: The DevOps model is challenging organizing
	 principles that have long driven security operations in many enterprises.

While some security professionals have been slow or resistant to change, others are embracing these chal-
lenges, seeing an opportunity to apply DevOps technologies to security, and to blend development and security
operations. Hence, the term “DevSecOps.”

While the term doesn’t exactly roll off the tongue, “DevSecOps” encapsulates two important trends. From an or-
ganizational standpoint, DevSecOps involves decentralizing operational security roles and functions, leading to
what some have called the “SOC-less enterprise.” On the technology side, it utilizes DevOps techniques to bring
security controls into alignment with the cloud-native stack.

The Rain Forecast: Cloud-Native Demands
Realignment of Security Architecture and Priorities
Bringing security practices and technologies into architectural and organizational alignment with the systems
they are meant to protect is one of the most important tasks of enterprise security today.

Simply put, organizational silos and traditional security architectures cannot support the business effectively as
it moves to cloud-native platforms. To protect business assets in cloud-native environments, organizations must
establish new methods, capabilities, and instrumentation. Any potential solution must include the following
functions:

	 •  Extensive, real-time visibility: Partial or after-the-fact visibility will not suffice. Both the infrastructure 	
	 layer and applications, wherever they are, must be visible.
	 •  Rapid, iterative feedback loops: Feedback loops allow security measures to adapt continually to
	 rapidly changing environments.
	 •  An engineering approach to solving security problems: Automation, continuous measurement, and
	 controlled experimentation will be the predominant method of solving security problems across the
	 enterprise, replacing manual analysis and control updates.

DevSecOps embodies this new approach. It also represents a significant opportunity to build security into much
earlier stages of the development and deployment process. That’s something security professionals have long
aspired to, moving the often adversarial relationship between security practitioners and business application
(and risk) owners to a more collaborative footing.

Detection engineering is a pivotal aspect of this alignment. Detection engineering uses automation and leverag-
es the cloud-native stack to discover threats and orchestrate responses before they can do significant damage.
As part of a move to DevSecOps, detection engineering can improve security posture. It also has implications
for how enterprises organize security programs and people. Consequently, organizations making the transition
to cloud-native architectures should consider how and when to incorporate detection into their security pro-
grams.

RAIN CAPITAL | DevSecOps and Detection Engineering: New Approaches To Security 2

RAIN CAPITAL | DevSecOps and Detection Engineering: New Approaches To Security 3

A Primer on Cloud-Native Systems
As distributed systems, cloud-native architectures are both complex and dynamic. Some of the fundamental
components of the cloud-native architecture are microservices, containers, and orchestration; serverless com-
puting; and the service mesh.

Here’s a quick primer on these cloud-native concepts:

	 1. Microservices, Containers, and Orchestration: The microservice architecture is a methodology for
	 developing and deploying distributed applications. Each service represents a discrete component
	 of the application. Decomposing a monolithic application into microservices allows organizations to
	 develop, update, and deploy components independently of each other. Development and subsequent
	 updates can move more rapidly, making the organization more agile.

	 2. Containers, such as Docker, have emerged as the infrastructure to deploy microservices.
	 Kubernetes, the leading container orchestration system, can automatically deploy, scale, and
	 maintain containerized microservices. Kubernetes has built-in management and security plugins
	 that allow administrators to specify pod-level or network-level policies.

	 3. Serverless computing: In the serverless execution model, developers deploy applications in a
	 pay-per-execution, just-in-time-resourcing model to a new kind of cloud platform. Amazon’s Lambda,
	 for example, is an “event-driven” platform that “runs code in response to events and automatically
	 manages the computing resources required by that code”. Developers can focus on the core
	 application, while scalability, availability, fault tolerance, and server management are all built into
	 the infrastructure. Serverless applications include scripts that allow service providers to dynamically
	 provision resources at run time. This more efficient utilization of server resources leads to lower
	 costs and more scalable computing.

	 4. Service mesh: A recent innovation, the service mesh provides an abstraction layer for networking
	 and security between microservices. Service mesh functions include service discovery, load
	 balancing, and rules-based routing that allow it to dynamically manage the communications between
	 services. With additional capabilities such as isolation of failing instances, strong authentication,
	 authorization, and real-time metrics, the service mesh is poised to become the primary fabric for
	 running and managing cloud native systems. Istio is an open source service mesh implementation
	 that grew out of internal projects at Lyft, Google, and IBM. Version 1.0 of Istio was released in
	 July of 2018.

https://kubernetes.io
https://aws.amazon.com/lambda/
https://istio.io

RAIN CAPITAL | DevSecOps and Detection Engineering: New Approaches To Security 4

Cloud-Native Security Implications: DevSecOps

The combination of containers, microservices, and orchestration frameworks has ushered in a new era of ap-
plication development and deployment, creating significant implications for enterprise security. In the cloud-na-
tive environment, the notions of an “application” running on a “machine” in a persistent “state” are obsolete.
The application, or service, is now a distributed system, consisting of multiple components running on a highly
variable number of nodes, in a nearly constant state of change. Traditional security controls that rely on machine
isolation and a predictable system state are ineffective. Security policies that are blind to service-to-service
communications and controls that lack horizontal scalability simply cannot keep pace with today’s microservice
applications.

In cloud-native and DevOps-driven environments, security controls must be both agile and scalable, providing
new capabilities that match the new environment. DevSecOps, then, is a logical step in this evolution, applying
the lessons of DevOps and SRE to security. Just as DevOps enables continuous development and deployment
pipelines, DevSecOps must enable continuous security pipelines.

This means making security engineers accountable for the operational implications of security controls. It also
means engaging DevOps people in security pipelines, blurring the distinctions between the security operations
center (SOC) and DevOps. It means building new controls, real-time metrics, and rapid feedback loops. Accom-
plishing these goals requires realignment in both the architectural and organizational domains.

Detection engineering is an example of these new capabilities, one that organizations can apply to their increas-
ingly cloud-native environments.

Detection Engineering
Detection engineering is the continuous process of deploying, tuning, and operating automated infrastructure
for finding active threats in systems and orchestrating responses. Indeed, both the terms “detection” and “engi-
neering” carry important connotations when it comes to the new approaches to security we’re discussing:

	 1. Detection: The debate over preventative versus detective controls isn’t new. The key is finding the
	 right balance between the two given an organization’s risk profile. But most enterprises have
	 invested significantly more in prevention than they have in detection. In fact, much of the
	 cybersecurity industry has focused on the creation, marketing, and sale of prevention technologies
	 and products.

	 The Challenge: But products focused on prevention are failing. Repeatedly. Insider threats, social
	 engineering, zero-day attacks, determined and state-sponsored attackers, and many other factors
	 have made an over-reliance on prevention a losing bet. It’s simply smarter, and more effective, for
	 security managers to focus on detection rather than attempting to build impenetrable systems.

	 2. Engineering: The goal of any successful alerting system is to separate signal from noise, distilling
	 meaningful and actionable alerts from the collection of event information, moving them up the chain
	 for remediation and response. In a typical security operations center (SOC), analysts process those
	 alerts, determining their severity and whether to escalate them to a higher-level analyst or incident 	
	 response team. Processing alerts involves compiling contextual data (who, what system, how it’s
	 used, what roles, and so on), filtering according to some or all of that contextual data, comparing
	 events with threat feeds, and assembling a coherent picture of what happened--all before deciding
	 what to do about the alert.

Figure 1: Security Alert Matrix

	 The Challenge: However, given the sheer volume of alerts and event logs complex systems can
	 create, this is a staggering task at best. Overwhelmed by mountains of busy work, security programs
	 suffer from analyst burnout and alert fatigue. As analysts become desensitized to the staggering
	 data load, real problems slip through their fingers. As Ryan McGeehan said in a recent post,
	 “when a human being is needed to manually receive an alert, contextualize it, investigate it, and
	 mitigate it...it is a declaration of failure.”

	 Consequently, organizations such as Netflix, Lyft, and Square have started treating threat detection
	 as an engineering problem, using automation to avoid these pitfalls and make security teams more
	 effective. They are also avoiding the silos that separate detection, response, and development teams,
	 following the DevOps mindset when building detection mechanisms and integrating them with
	 response orchestrations.

RAIN CAPITAL | DevSecOps and Detection Engineering: New Approaches To Security 5

Signal

Noise

Event
Collection

Alert
Response

• Low false positives
• Effective remediation

• Alert fatigue
• Analyst burnout

https://www.networkworld.com/article/2919515/security0/the-science-behind-alert-fatigue-how-to-turn-down-the-noise-so-you-can-hear-the-signal.html
https://www.darkreading.com/attacks-and-breaches/target-ignored-data-breach-alarms/d/d-id/1127712
https://medium.com/starting-up-security/lessons-learned-in-detection-engineering-304aec709856

While organizations could use SIEM or a centralized data lake and analytics to perform security detection, true
detection engineering requires a different structure, focusing on a smaller group of skilled engineers rather than
a large group of centralized analysts. It also requires a different infrastructure.

Detection Engineering Infrastructure
In practice, implementing detection engineering requires an integrated infrastructure that consists of the
following components:
	 •  Data sources
	 •  Event pipelines
	 •  The correlation engine
	 •  Response orchestrations
	 •  Testing and feedback loops

Figure 2: Detection Engineering Infrastructure

Our definitions and examples of detection engineering infrastructure components rely heavily on the work of
Alex Maestretti, engineering manager of Netflix’s detection and response team, and Ryan McGeehan. We
thank them for sharing their insights with us and allowing us to reference them here.

1RAIN CAPITAL | DevSecOps and Detection Engineering: New Approaches To Security 6

APIs
ETL

Tools

Event
PipelinesData Sources

Analytics/Rules

Machine Learning

Data
Repository

SaaS
Infrastructure

Platform

Applications

Public Cloud

Infrastructure

Platform

Applications

Private Cloud

Infrastructure

Platform

Applications

Legacy
Data Center

Batch

Streaming

Batch

Streaming

Batch

Streaming

Correlation
Engine

Response
Orchestration

Rule-Based Events

Model-Based Events

Enrichment

Automated
Responses

Enrichment

Analytics/Rules

Scoring User
Interface

Escalation
to Owner/
On-Call

+ +

Queries

?
Feedback

Rich AlertsRich Alerts

https://www.linkedin.com/pulse/socless-detection-team-netflix-alex-maestretti/
https://medium.com/starting-up-security/lessons-learned-in-detection-engineering-304aec709856

RAIN CAPITAL | DevSecOps and Detection Engineering: New Approaches To Security 7

1. Data Sources

An effective detection system must start with data about the applications and infrastructure that it is protecting.
But getting the right (and good) data is not always easy. Some of the key aspects to consider are:

	 •  Cloud-native visibility: The cloud-native architecture has introduced new layers and components
	 such as containers, orchestrators, service mesh, and others. Collecting data from these systems will
	 likely require new tools and instrumentation.
	 •  Align instrumentation and log consumption: Instead of creating a central team that deals with logs
	 written by others, security engineers should work directly with DevOps to instrument data collection.
	 The security organization should also hold those engineers accountable for the results. Neflix for
	 instance, holds the philosophy that the person who logs the data should be the person who
	 consumes that data. This brings a new level of rigor and discipline to the process of creating
	 useful logs.
	 •  Find the best sources: Different systems support different levels of instrumentation and use different
	 data schemas and models. Security managers need to find and understand the different logs and
	 formats and decide which are relevant to threat detection.
	 •  Decentralizing detection: The traditional detection architecture focuses on gathering a massive
	 amount of data into a centralized data lake and run detection algorithm on it. This means detection
	 can hardly be in real time as the amount of analysis needed is enormous. Utilizing a distributed
	 architecture that performs detection closer to major sources of data allows for much faster detection
	 and higher quality of data to be gathered.

2. Event Pipelines

Event pipelines gather event data, streamline them via automated mechanisms, and prepare them for further
examination before a human ever has to see them. To ensure effective detective controls, security teams must
consider these issues when building event pipelines:

	 •  Stream vs. Batch: Today, many SaaS products and most legacy systems can’t push log and
	 instrumentation data to security system, making batch processes a necessity. But organizations
	 should instrument services to stream data in real time to event pipelines when practical and possible.
	 •  Normalization vs. Workflows: Security teams should avoid the difficult work of normalizing event
	 data by creating pipelines for each data source, basing its workflow on the data in that system.
	 Templates and reusable modules to streamline work on common data types can streamline these
	 efforts.
	 •  Alert Frameworks: A rigorous framework for creating events and alerts, and the rules that drive them,
	 is essential. The process should follow the same engineering standards that govern software
	 projects, making alerts subject to peer review and using a version-controlled repository. And the

RAIN CAPITAL | DevSecOps and Detection Engineering: New Approaches To Security 8

	 person who writes an alert should be accountable for its results. Palantir’s incident response team
	 posted an excellent write up on such a framework.
	 •  Enrichment: The low quality of security alerts is a major contributor to alert fatigue. Automation
	 should enrich event data, adding critical information, eliminating manual labor, and improving alert
	 quality. In general, less-expensive enrichments--such as a health and schema check or lookups for
	 specific values, such as the geo-location of an IP address -- occur in the event pipeline.
	 •  Machine Learning: Proven machine learning techniques increase the ability of the system to detect
	 active threats and conditions that warrant further investigation, reducing false positives. Algorithms
	 for feature extraction run on the data, building models of actions, looking for anomalies and
	 conditions, generating model-based events that drive event triggers.
	 •  Forensic Data Storage: Detection engineering infrastructure should store and archive event data,
	 which can be crucial when it comes to forensic activity.

3. The Correlation Engine

The event pipeline passes only the events warranting further inspection onto the correlation engine, which will
ultimately determine automated responses to alerts, including notifying humans. Key factors include:

	 •  Choice of Platform: The correlation engine is typically a data analytics platform. Commercial
	 detection engineering products such as Capsule8 include their own data analytics engine. Some
	 organizations rely on Splunk while others use Elasticsearch. (Disclosure: Rain Capital has an
	 investment in Capsule8.)
	 •  Further Enrichment: The correlation engine uses rules and more expensive enrichment to determine
	 whether the system triggers an alert sent to a human or invokes automated response mechanisms.
	 Security teams will need additional tools and services to gather and include data such as the user
	 accounts involved in an event, their security classification, who they work for, and their contact
	 information. Context-specific information can include screenshots of what the user saw (in the case
	 of a phishing attack, for example), how a given operation was launched (manually vs. automatically),
	 what privilege levels were used, and any privilege escalation that occurred. Automated
	 communication mechanisms, such as Slackbots, can reach out to get confirmations of activity or
	 more information from users.

https://medium.com/palantir/alerting-and-detection-strategy-framework-52dc33722df2
https://capsule8.com/
https://www.splunk.com/
https://www.elastic.co/

RAIN CAPITAL | DevSecOps and Detection Engineering: New Approaches To Security 9

4. Response Orchestration

Automation should do as much as possible to mitigate events as part of response orchestration, before an alert
reaches a human. When it does reach a human, a properly enriched alert should contain a reasonable set of
response actions. The right set of response actions will depend, of course, on the application and the type of
event. In general, however, these are some of the factors to consider:

	 •  Automate common fixes: If a common temporary fix involves re-deploying a cluster in Kubernetes,
	 for example, a workflow could re-deploy it automatically, triggered by a rule. Alternatively, an alert
	 could include re-deployment as an option, allowing the human receiving the alert to do so with just the
	 click of a mouse, saving a great deal of time and effort.
	 •  Build in communication: Effective response and escalation orchestration should include mechanisms
	 that can quickly bring users, developers, and other relevant players into the communication loop.
	 Integration with Slackbots is often a key component of detection engineering. Dropbox recently
	 released Securitybot, a communication mechanism designed specifically for integration with
	 detection engineering systems, under an open source license.

5. Testing and Feedback Loops

Given a set of response options, the security team should capture feedback on how alerts are working for alert
tuning and improvement. These feedback loops should include end-to-end integration testing. This includes
working with red team and other testing efforts. McGeehan says security teams should “treat detection the
same way you’d treat a build pipeline supported by CI/CD platforms like Jenkins.” He recommends simple sce-
nario tests and writing direct attacks on the detection mechanisms. Canary testing is another useful technique
for testing changes to controls. More often than not, the team will gain valuable insight into how the system
works, driving improvements in both existing and future detection controls.

https://blogs.dropbox.com/tech/2017/02/meet-securitybot-open-sourcing-automated-security-at-scale/

Case Study: The Netflix Implementation
As we noted earlier, Netflix’s detection and response team has been publicly discussing its detection engineer-
ing efforts. Due to its large scale, Netflix finds it more economical to build its own infrastructure than to buy
off-the-shelf products. Detection engineering is no exception. It’s also important to note that Netflix’s detection
engineering infrastructure is still a work-in-progress.

That said, Netflix is pioneering capabilities that point the way for commercial products and other enterprises
as they make the transition to cloud-native systems. In this case study, we cover the components of the Netflix
infrastructure as an example of the functionality strong detection engineering systems should provide.
Figure 3 (below) illustrates the detection infrastructure architecture defined by Netflix.

Figure 3: The Netflix Detection Engineering Infrastructure (image courtesy of Netflix)

1. Data Sources
At Netflix, data sources include applications running on the Netflix platform in AWS, applications in third-party
clouds, and the internal infrastructure and systems that Netflix manages for itself.

RAIN CAPITAL | DevSecOps and Detection Engineering: New Approaches To Security 10

RAIN CAPITAL | DevSecOps and Detection Engineering: New Approaches To Security 11

For monitoring host systems, Netflix relies on custom development based on open source capabilities such as
the extended Berkeley Packet Filter (eBPF) and osquery. eBPF allows developers to gather performance
metrics, behavior data, and errors at all levels of the operating system. Osquery is an instrumentation framework
for Windows, macOS, Linux, and FreeBSD that exacts low-level system data and allows security managers to
explore them via SQL queries.

2. Event Pipelines

Instead of normalizing event data upfront, Netflix creates a workflow for each data type. The team then takes
what has been a customized process and streamlines it by creating templates and reusing as much code as
possible from previous onboarding efforts. As the team repeats the process with common data sources, Alex
Maestretti, engineering manager of Netflix’s detection and response team, thinks the percentage of code and
template reuse will jump significantly, a metric he watches closely.

While he acknowledges each data source may require a bit more effort to set up, Maestretti says the upside is
far more flexibility. In addition, Maestretti says Netflix is working to make data sources as self-serve as possible,
allowing software engineers who aren’t data engineers to access and onboard the data for their event pipelines.

Other important elements of Netflix’s event pipeline infrastructure include:

	 •  Batch and Stream: Today, Netflix still runs batch processes on some data, using ETL tools and APIs
	 as necessary. But since Netflix prefers streaming data whenever possible, the team works with
	 Zipkin, a distributed trace system for microservice architectures. Using Zipkin, developers can
	 instrument applications to report data such as timing and dependency, and detection controls can
	 dynamically tell Zipkin which data they need on a particular trace.
	 •  Kafka: Each workflow loads event data into Kafka, the backbone for Netflix’s event pipelines. As a
	 distributed pub/sub messaging system, Kafka allows developers to define topics, or queues, for
	 particular message flows. The workflows load data sources onto Kafka topics, and other components
	 of the detection engineering infrastructure subscribe to the topics important to them.
	 •  Alert Framework: Netflix has extended the Palantir framework to ensure that any given alert is
	 created in a consistent and disciplined fashion.
	 •  Accountability: In the ideal state, system owners will use the framework to write rules. While the
	 security team has responsibility for overall security, system owners have primary responsibility for the
	 reliability and security of their systems. System owners create “alert packs”, which define the alerts
	 they deem important. Developers who need to use a given service can then leverage these alert packs
	 in a self-serve model.
	 •  Rule Refinement: Netflix is making rule development and refinement part of its standard security
	 processes, such as post-incident reviews. All of this work must blend back into the framework,
	 following the process for updating an alert and documenting those changes.

https://en.wikipedia.org/wiki/Berkeley_Packet_Filter
https://osquery.io
https://zipkin.io/
https://kafka.apache.org
https://medium.com/palantir/alerting-and-detection-strategy-framework-52dc33722df2

RAIN CAPITAL | DevSecOps and Detection Engineering: New Approaches To Security 12

	 •  Enrichment: As Figure 3 illustrates, Netflix has used Apache Spark as its rules and analytics engine,
	 driving the enrichment of data in the event pipeline. Netflix has used Spark primarily for batch-mode
	 data sources, but is moving to Apache Flink as more data sources are streamed to the event pipe
	 line. Apache Hive is the data warehouse, storing event data, machine models, logging data,
	 performance and feedback data on the models, and other relevant data. It also supports forensic
	 investigation on historical data.

3. The Correlation Engine

Netflix has targeted Elasticsearch for its correlation engine. Using pre-defined templates and APIs, Elastic-
search can load and transform data from the event pipelines, support searches of that data, score an event
based on queries and rules. The system further enriches event data via GraphQL, which enables queries to
APIs, on relevant systems.

Still, Maestretti says Netflix has work to do in determining implementation specifics. Netflix has a substantial
investment in Elasticsearch, which is the data analytics platform for its video streaming service, and Netflix’s de-
tection and response team is familiar with the Elasticsearch platform. The security team thinks it can repurpose
the existing platform, generalizing its structures to support security domains, but has yet to prove that theory.
The detection and response team also plans to leverage the work of Netflix’s data science team, working from a
menu of algorithms, and applying them to data sources to improve the models and reduce false positives.

4. Response Orchestration

As Figure 3 shows, “automated forensics” is one of many possible response orchestrations. Python scripts
running AWS Lambda functions automate this process, using specialized Amazon Machine Instances (AMIs), S3
buckets, and roles to create a trusted forensics environment. An alert can come to a human with the option for
running this automation. In some cases, it can run automatically, without human intervention.

In either case, the automation uses AWS APIs to snapshot the drive(s) in an instance (or many instances), and
share it with a special forensics account. The forensics account creates a copy of the volume, which is mounted
in a predefined AMI that includes trusted forensics tools. Inside the AMI, a tool known as Diffy takes a hash of
the suspect volume and compares it to known good file hashes. Diffy then captures any anomalous files, output-
ting them to YAML as forensic artifacts.

Diffy can also reveal if instances are listening on an unexpected port, running an unusual process, or have in-
serted an unknown kernel module. It can collect a functional baseline from a known clean running instance and
compare it against an instance group, or survey all instances, revealing any outliers.

More detail on this topic is available in the video of Maestretti’s 2017 AWS re:Invent talk. Netflix also recently
released Diffy under an open software license, and you can get more information here.

https://spark.apache.org
https://flink.apache.org/
https://hive.apache.org/
https://www.elastic.co/
https://graphql.org
https://www.youtube.com/watch?v=ZoCJ_VIsLQs
https://medium.com/netflix-techblog/netflix-sirt-releases-diffy-a-differencing-engine-for-digital-forensics-in-the-cloud-37b71abd2698

RAIN CAPITAL | DevSecOps and Detection Engineering: New Approaches To Security 13

5. Testing and Feedback Loops

Netflix has been evaluating several products in atomic red team testing with the intent to automate end-to-
end testing of the detection and response system. Maestretti says Netflix has created a proof of concept for
a couple of attacks with these products, deploying those attacks via its automated CI/CD pipeline, Spinnaker.
Currently, those test attacks flow all the way through to a human. While it’s important to test human responders,
he says, it’s not something he wants to do continuously. The team wants to modify the mechanisms so it can
isolate the testing to machine and software components, allowing them to do it more often.

Culture and Decentralization

Simply investing in technology and products will not enable an organization to suddenly become more proficient
at detection and response. For many enterprises, success will require fundamental shifts in company culture
and mindset. Key stakeholders--such as legal and compliance teams--must be aligned, and development teams
must buy into the DevOps mentality. This means leadership must be committed to, and actively involved in any
such undertaking. The first step in that effort is taking a hard look at the role of the traditional SOC.

As an organizational construct, the SOC is predicated on the assumption that the analyst team understands
most (or all) of an organization’s systems, has experience with most (or all) of the organization’s security sys-
tems, and can define and analyze threats. Given the inherent complexity of cloud-native systems, however, these
assumptions simply don’t hold up in the DevOps world. And when one considers the rapid change that charac-
terizes cloud-native operations, it’s fair to conclude that a centralized SOC may be incapable of keeping up with
a business based on cloud-native systems.

The Decentralized, SOC-less Enterprise

When Netflix’s Maestretti and others talk about the “SOC-less enterprise,” then, they’re really talking about decen-
tralizing the SOC, integrating security functions and people more directly with the DevOps process. That means
moving alert triage from a centralized SOC to the system owner/on-call, whether it’s a security or an application
team. Instead of the traditional SOC, then, organizations have more of an on-call rotation, operating with the
DevOps mindset.

Maestretti thinks that with solid detection engineering capabilities, Netflix can bring developers and system
owners up to speed on a security alert more easily than it can teach a security person the details of a production
system. By providing high levels of context and enrichment, alerts can tell developers and system owners what
the alert means and give them a set of response options. (He also emphasizes that overall responsibility for
both the quality of and the response to the alert rests with the security team.)

https://www.spinnaker.io

RAIN CAPITAL | DevSecOps and Detection Engineering: New Approaches To Security 14

While for some enterprises, wholesale or overnight adoption of this approach may not be realistic, building a
roadmap that leads to a more decentralized or hybrid security organization may be critical to remaining com-
petitive in the future. As systems grow more decentralized and agile, it becomes difficult to imagine a future
that does not involve a shift towards cloud-native systems, with all the unique security implications arising from
them.

Staffing Will Always Be The Biggest Pain Point In Security
The shortage of capable security personnel is well-documented. While automation may reduce the need for
some lower skilled analysts, detection engineering increases the need for skilled engineers and analysts. Today,
many organizations lack staff with the skill sets necessary for detection engineering.

Over time, outside resources may emerge that can augment internal capabilities. But it’s equally clear that
organizations that move to cloud-native architectures should ensure that they build and maintain a solid internal
capabilities in these areas. Existing staff may need training to expand their capabilities. People who are good at
operations, for example, may need additional skill sets such as cross-functional program management.

And while a company like Netflix may find it more economical to build its own infrastructure, many enterprises
will need build a core team of “detection engineers” around a solid commercial product. Some of the technical
solutions that are helping organizations achieve detection engineering competency include Capsule8, Sysdig,
Elastic Stack (ELK), MistNet, and Splunk.

Conclusion
As organizations move to cloud-native systems, security must evolve, gaining higher degrees of alignment in
terms of the technology stack and DevOps mindset. That means creating continuous security pipelines that
accompany the continuous development pipelines inherent to the cloud-native ecosystem. Detection engineer-
ing is one way organizations can accomplish that goal. Enterprises moving to cloud-native technologies should
consider how and when to incorporate these practices into their security programs, being careful to understand
the importance that culture change plays in successfully making that transition.

https://capsule8.com
http://www.sysdig.com
https://www.elastic.co/elk-stack
https://www.mistnet.ai
https://www.splunk.com/

RAIN CAPITAL | WWW.RAINCAPITAL.VC | INFO@RAINCAPITAL.VC

About the Authors

Jamie Lewis
Jamie Lewis has studied core infrastructure technologies for more than 25 years. He was founder and CEO of
Burton Group, an enterprise IT research and advisory firm, which Gartner acquired in 2009. He began working
with startups through angel investing. He joined Rain Capital as a Venture Partner in 2018.

Dr. Chenxi Wang
Dr. Chenxi Wang is Founder and General Partner of Rain Capital. She has held numerous executive positions
in the Cybersecurity industry prior to founding Rain, including VP of strategy at Intel Security and VP of research
at Forrester. Dr. Wang is a trusted advisor to many security leaders and serves on the global BoD for OWASP
foundation.

About Rain Capital

Our mission at Rain Capital is to identify and invest in disruptive companies that push the boundaries of Cyber-
security capabilities. We look for:

	 •  Defensive technologies that empower the modern defenders; delivering actionable insight,
	 automated response, and defense at scale.
	 •  Trust disruptions that leverage blockchain or identity innovations that redefine digital trust.
	 •  The Scaling Factor that enables security operations of massive scales with automation, Artificial
	 Intelligence, and a service-first mindset.

For more information, you can check out our website at www.raincapital.vc or contact us at
info@raincapital.vc.

https://www.linkedin.com/in/jamie-lewis-23249
https://www.linkedin.com/in/chenxiwang88
http://www.raincapital.vc
mailto:info%40raincapital.vc?subject=Rain%20Capital%20Security%20Report

